

Electronic structure of RuO₂ under strain

Quoc Dai Ho, Ruiqi Hu, D. Quang To, Garnett W. Bryant*, and Anderson Janotti

Department of Materials Science and Engineering, University of Delaware, Newark, DE

*Nanoscale Device Characterization Division, Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, MD

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS CHARMAN at the UNIVERSITY OF DELAWARE

RuO₂: a new type of magnetic material

Libor Šmejkal, Jairo Sinova, and Tomas Jungwirth, Phys. Rev. X 12, 031042 (2022)

Why strained RuO₂?

PHYSICAL REVIEW LETTERS 125, 147001 (2020)

Editors' Suggestion Featured

Featured in Physics

Superconductivity in Uniquely Strained RuO₂ Films

Masaki Uchida[®],^{1,2,3,*} Takuya Nomoto,¹ Maki Musashi,^{1,2} Ryotaro Arita[®],^{1,4} and Masashi Kawasaki^{1,2,4} ¹Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan ²Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan ³PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan ⁴RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

ARTICLE

https://doi.org/10.1038/s41467-020-20252-7 OPEN

Strain-stabilized superconductivity

J. P. Ruf [©] ^{1⊠}, H. Paik^{2,3}, N. J. Schreiber³, H. P. Nair³, L. Miao¹, J. K. Kawasaki [©] ^{1,4}, J. N. Nelson [©] ¹, B. D. Faeth^{1,2}, Y. Lee¹, B. H. Goodge [©] ^{5,6}, B. Pamuk⁵, C. J. Fennie [©] ⁵, L. F. Kourkoutis [©] ^{5,6}, D. G. Schlom [©] ^{3,6,7} & K. M. Shen [©] ^{1,6⊠}

Masaki Uchida et al., Phys Rev Lett **125**, 147001 (2020)

Ruf, J.P., Paik, H., Schreiber, N.J. et al. Strain-stabilized superconductivity. Nat Commun **12**, 59 (2021)

Check for updates

Computational Methods

- First principles DFT
- VASP package: PW basis set + PAW potential
- Wannier90 for very dense k-mesh quantities

GGA, GGA+U, META-GGA, hybrid functional?

Testing parameters:

- 600 eV ENCUT
- 12x12x18 k-point mesh
- Force convergence criteria: 0.001 eV/Å

Method	a (Å)	c(Å)	Local moment (µB)
PBE	4.522	3.121	0.005
PBE+U (1.0)	4.519	3.126	0.005
1.25	4.532	3.130	0.848
1.5	4.538	3.133	0.996
2.0	4.549	3.136	1.205
SCAN	4.491	3.111	1.024
experiment	4.490	3.110	Varied 0.2 ~ 1

- PBE: non-magnetic
- HSE06: semiconductor
- PBE+U: not very good lattice constant
- SCAN: good lattice constants, magnetic moment and electronic structure

Electronic structure of bulk RuO₂

- Metallic collinear AFM
- Large spin polarization along $\langle 110 \rangle$
- SOC has little effect

Electronic structure of bulk RuO₂

Closer look at the directions with large spin polarization

 M_1

Strained RuO_2 with growth direction along [110]

Net magnetization of ~0.2 µB per unit cell Spin moments lying along the original easy axis

Electronic structure of strained vs unstrained RuO₂

Strain induces a net magnetization with high density of states close to Fermi level

Magnetization density: symmetry breaking Rotational symmetry connecting spin densities of the two sublattices broken **Applying strain**

Conclusion and future study

- Electronic structure of RuO₂ can be tuned by strain engineering
- $_{\rm O}$ Under strain, crystal symmetry broken leading to a net magnetization and higher DOS near $\rm E_{\rm F}$
 - Effect of strain in thin films
 - TRS broken induced responses of the materials

