

Confinement-induced topological phase transition in thin film LaSb

Dai Q. Ho¹, Quang To¹, Ruiqi Hu¹, Anderson Janotti¹, Garnett Bryant²

¹Materials Science and Engineering Department, University of Delaware ²Nanoscale Device Characterization Division, National Institute of Standards and Technology, Maryland

Introduction to Rare-earth monopnictides RE-Vs

- Compensated semimetalics used for spintronics, thermoelectric materials, low contact resistance materials, etc.
- LaSb is an XMR material and on the verge of transition from a trivial semimetal to a topological semimetal

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS

F. Natali et al., Progress in Materials Science 58 (2013) 1316–1360 HISASHI INOUE et al, PHYSICAL REVIEW MATERIALS 3, 101202(R) (2019)

Electronic structure of bulk LaSb

Orbital composition of e-pocket at X_i

Electronic structure of 15ML freestanding film LaSb

GGA+U+SOC

- Too many metallic state => the thin film remains metallic
- Difference in the extent of electron pockets movement is not significant
- Substantial quantization effect for in-plane electron pockets
- \circ ~ Interesting interaction around $\overline{\Gamma}$

Electronic structure of thinner LaSb films

Electronic structure of thinner LaSb films: a closer look

AND RESPONSIVE MATERIALS

Electronic structure of 3ML LaSb

HSE06+SOC calculation

Spin polarization of edge states in momentum space

- ✓ Observation of phase transition for LaSb from a trivial semimetal in the bulk to a sizeable gap QSH insulator in the ultrathin film limit characterized by $\mathbb{Z}_2 = 1$, TRS-protected Dirac point, and spin-polarized edge states
- The origin of the QSH phase is due to inverted band feature between La-d and Sb-p at Γ and gap opening by SOC.
- ✓ This phenomenon could be observed for other RE-Vs

- NSF MRSEC project for funding
- XSEDE for computational resources
- Dr. Janotti at UD and Dr. Bryant at NIST research groups

