

Revisiting the electronic structure of ErAs/GaAs(001) interface

Dai Q. Ho¹, Ruiqi Hu¹, Garnett Bryant², Anderson Janotti¹

¹Department of Materials Science and Engineering, University of Delaware ²Nanoscale Device Characterization Division, National Institute of Standards and Technology

February 8, 2025

Rare earth pnictides on III-V semiconductors

ErAs semimetal antiferromagnetic T < 3 K rock salt crystal structure

nearly lattice matched continuous As sublattice

GaAs

semiconductor, direct band gap of ~1.5 eV zinc blende crystal structure

Epitaxially lattice matched metal- semiconductor contacts

- Nature and impact of the interface states?

Er

As

 Will ErAs thin film become a semiconductor in the limit of few monatomic layers? ErAs/GaAs(001) grown by molecular beam epitaxy (MBE) C. J. Palmstrom, N. Tabatabaie, and S. J. Allen, Appl. Phys. Lett. **53**, 2608 (1988)

2

ErAs/GaAs(001):

• Ga terminated interface

• As sublattice continuous

D. O. Klenov *et al.,* Appl. Phys. Lett. 86, 241901 (2005)

W. R. L. Lambrecht *et al.*, Solid State Commun. **108**, 361 (1998) K. T. Delaney *et al.*, Phys. Rev. B **81**, 165312 (2010)

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS

Computational approach

- Density functional theory (DFT) within the generalized gradient approximation
- Tests performed using the HSE06 hybrid functional
- PAW method for electron-ion interaction
- Atomic positions are relaxed until forces are less than 0.01 eV/Å
- VASP code

Band structures of ErAs and GaAs at GGA

Y

• ErAs is a semimetalic while GaAs is a semiconductor

4

Band structure of GaAs including SOC

- Top of the valence band split into 2+1 bands at Γ due to SOC
- Band gap of GaAs at HSE06 is very close to the experimental value

Band structures of ErAs including SOC

- Top of the valence band split into 2+1 bands at Γ due to SOC
- Carrier concentration in HSE06 is in good agreement with experimental value

6

ErAs/GaAs(001) band structure

- Structure of the interface with Ga-termination, continuous As-sublattice between the two materials
- One interface state for each state, E_F pinned by interface states

Band structure projected on interface atoms

Janotti/Bryant group

Band structure projected on interface atoms

Janotti/Bryant group

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS

9

CENTER FOR HYBRID, ACTIVE, AND RESPONSIVE MATERIALS

Partial charge density of ErAs/GaAs(001)

- The existence of interface states in GaAs/ErAs(001) heterostructure
- Fermi level pinning by the interface states
- GaAs/ErAs(001) leads to a partially filled interface bands
 - Completely delocalized in the plane
 - Tightly bound to the interface (within a few ML)
 - 2D hole gas with high hole concentration
 - Metallic interface states persist down to a very thin limit of ErAs film thickness.

